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Quantum research with optimization

I Maximizing concurrence

I Improving ORBIT for stochastic functions

I Optimization of variational parameters

I Cutting quantum circuits

I Time-varying control
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Maximizing concurrence

I Entanglement is the amazing (confusing) feature of quantum mechanics
that motivates quantum research

I Concurrence is a measure of entanglement of a quantum system

I Concurrence of two quantum dots excited by a single optical laser pulse:

“QuaC: Parallel time Dependent Open Quantum Systems Solver.” Otten
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Maximizing concurrence

I Pairwise concurrence is measured by

Cij = max{0,
√
λ1 −

√
λ2 −

√
λ3 −

√
λ4},

where λk are the (descending) eigenvalues of a density matrix relating
particles i and j .

I Possible goal: Identify quantum system parameters x solving

maximize
x

∑
ij

Cij(x)2
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Otten, Larson, Min, Wild, Pelton, Gray. Origins and optimization of entanglement in

plasmonically coupled quantum dots. Physical Review A, 2016
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A 5D problem from Rigetti
Variational quantum eigensolver (VQE) methods want to identify the
parameterization of the quantum state |ψ〉 at which E [H(|ψ〉)] is
minimized.

Wild, Shoemaker. Global convergence of radial basis function trust-region algorithms for

derivative-free optimization. SIAM Review, 2013.
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Improving ORBIT with Gaussian processes

53 stochastic benchmark problems with significant noise.
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Improving ORBIT with Gaussian processes

“SKQuant-Opt: Optimizers for noisy intermediate-scale quantum devices”, Lavrijsen, Tudor,

Larson, Sung, Linder, Mueller, McClean, Babbush, Urbanek, Iancu, and de Jong, 2019

6 of 10
.



Quantum approximate optimization algorithm
I In QAOA, the quantum evolution starts in the initial state |+〉⊗n.

I The evolution is then performed by applying two alternating operators
based on the cost Hamiltonian HC and mixing Hamiltonian HM

|ψ(θ)〉 = |ψ(β, γ)〉
= e−iβpHM e−iγpHC · · · e−iβ1HM e−iγ1HC |+〉⊗n .

I p is the number of QAOA “steps.”

I Then the objective function f (i.e., the energy of HC in the state
|ψ(β, γ)〉) is

f (β, γ) = −〈ψ(β, γ)|HC |ψ(β, γ)〉 .
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QAOA on graph clustering
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QAOA on graph clustering

Larson, Wild. Asynchronously parallel optimization solver for finding multiple minima.

Mathematical Programming Computation, 2018
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QAOA on graph clustering

Shaydulin, Safro, Larson. Multistart Methods for Quantum Approximate Optimization. 2019

IEEE High Performance Extreme Computing Conference. (Best student paper finalist)
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QAOA on graph clustering

Highlights the need for specialized optimization methods for quantum
variational algorithms
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Cutting quantum circuits
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Cutting quantum circuits
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Control of time-varying systems

Experiment on qubit 0 of an IBM 20-qubit chip obtained on 3/23/19
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